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The conjugate problem of heat conduction with a moving boundary is
formulated and solved in relation to conductive drying. The approxi-
mate solution of the problem is analyzed and compared with the exper-
imental data.

The conductive drying of cellulose, paper, tar paper
and other thin fibrous materials involves two stages:
the periods of constant (first period) and falling (sec-
ond period) drying rate [10]. The latter period is itself
divided into two parts, the boundary between which is
the second critical moisture content. Whereas the
first period corresponds to constant or slowly falling
average temperature, the first part of the second
period is characterized by a sharply falling tempera-
ture, and the second part by a sharply increasing
average temperature.

In accordance with the drying mechanism described
by one of the authors, the second period begins with
the depression of the evaporation zone below the heat-
ing surface. During the first part of the secondperiod,
this depression proceeds much more slowly than in
the second.

Thus, in the second period the material is divided
into two regions—a dry and a wet region; evaporation
proceeds at the outer surface of the material andboth
at the boundary between the regions and in the moist
material adjacent to the boundary. The vapor formed
inside the material diffuses through the wet region to
the free surface. The temperature of the evaporation
surface at the boundary between the regionsdecreases
with time. Whereas, in the first part of the second
period, moisture is transported in the form of liquid
and vapor, in the second part, it is transported pri-
marily in vapor form.

In the second period, the amount of heat trans-
ferred to the material from the heating surface falls
continuously with time.

It is important to make an analytical determination
of the temperature fields in the drying material during
the second period of conductive drying and compare
them with the experimentally obtained fields. This
would make it possible to refine the proposed mecha-
nism of the process and develop a theoretical method
of calculating conductive drying.

For this purpose, it is necessary to solve the non-
steady conjugate boundary value problem of heat con-
duction with a moving boundary between the dry and
wet regions of the material. The dry region grows
thicker and the wet region grows thinner with time.

As far as the authors are aware, such problems
have not been solved or even applied for drying pur-
poses except in the work of certain Japanese scientists
[6] who attempted to analyze the drying process in re-
lation to the end stage of convective drying of granular
and powdered materials.

We attempt to formulate the problem asitappliesto
conductive drying.

Consider a moist capillary-porous body in the form
of an infinite plate of thickness I (Fig. 1) in direct con-
tact (x = 0) with a heating surface from which heat is
transferred to the body exclusively by conduction at a
flux density q(7). The vapor formed can not be trans-
ported across the surface x = 0. At the free surface
x = I, both the vapor formed at that surface and the
vapor formed inside the material and transported
through the body escape into the ambient vapor-air
medium. The heat flow across an arbitrary surface in
the body is composed of the heat transported by the
skeletal structure of the body, by vapor, and by liquid.

The analytical solution of the conjugate problem of
heat conduction for the first drying period with a steady
boundary gives the initial temperature distribution
over the thickness of the body ty,3(x, 0) = t4(x, 0) = fi(x),
which is the initial distribution (at 7 = 0) for the sec-
ond drying period. Consequently, the temperature of
the body (ty) in the plane x = 0 is known.

After time 7 = 0, the evaporation zone starts to be
depressed and the body is divided into dry and wet re-
gions, the position of the boundary being determined
by the function £(7). The value of this function gives
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Fig. 1. Formulation of the
problem.
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the variable thickness of the dry region. The tempera-
ture at the boundary falls with time.

The region 0 = x = §(7), the dry region, consists of
the capillary-porous skeleton of the hody. The region
&(t) = x =1, the wet region, consists of the skeletoti of
the body, liquid, and vapor; their temperatures are
identical as 4 result of the intense heat transfer within
the body. In view of the small changes in the thermo-
physical properties of the body within each part of the
second period, the quantities @ and A may be assumed
constant.

In capillary-porous bodies with a highly developed
surface, evaporation takes place not only at the bound-
ary but also in the adjacent wet volume. Therefore,
heat sinks should be taken into account; both in the
boundary condition at the dry-wet boundary and in the
differential equation of the wet region, in the form of
continuously distributed heat sinks.

However, for simplicity, we will assume thatinter-
nal evaporation takes place only at the moving bound-
ary, whose position is determined by the function £(7).

The amount of heat expended on evaporation at the
boundary can be determined from the total heat flux
supplied during drying and the modified phase transi-
tion criterion & [10]. This criterion estimates the frac-
tion of heat transported by the vapor (formed, in this
particular case, at the evaporation surface) relative
to the total heat flux from the heating surface. It has
different values in the first and second parts of the
second period.

Mathematically, the problem may be formulated as
follows:

o P4
E— 7 at T>01 0<x<§(‘c), (1)
at,; 62t4

5—{=a46—x—2~ at v> 0, §(1) <x <! =const. (2)

The initial conditions are
t3(x, 0) =t1(x, 0) = fL{x). (3)

The boundary conditions:
a) at the outer fixed boundaries,

x=0
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where q(7) is some continuous function of time;
x=1
5
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ox
b) at the moving interface at x = §(1), the boundary
conditions will be: equality of the temperatures of the
dry and wet regions

L& 1) =1(E, ) =1,T@), (6)

where f(1) is an arbitrary continuous function of time
equal to 1 at 7= 0, i.e., at the initial instant, the tem-
perature at the interface is equal to ty; equality of the
heat fluxes with allowance for the phase-transition
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heat flux and the enthalpy change of the dried layer,

— s d5(E, 7) + 7»461‘4(5’ 7) =erm(x)—Al, (7)
Ox ox
where m(7) is some continuous function of time.
Equation (7) is the modified heat balance equation.
The heat introduced at the interface together with the
change of enthalpy due to phase transition (it "makes
up" the heat flux) is expended on the evaporation of
moisture at the moving boundary.
The quantity Al can be found from the expression

d d
AT =cypata (8, ©) 25 —cypy ts €, 7) 25 =
dx dt

— [ Pata (B %) —Capata(, 7] j—i (8)

Substituting (8) into (7), we obtain

-—x,,ata(g’ T) +7‘46t4§; ) =m{t)re 4 [c10a04(E, T) —

Ox
dg

— 3 p3t3(8, ) e (9)

The heat losses due to heat exchange with the ambi-
ent medium are small. Therefore, in condition (5)
they are not taken into account.

We determine the temperature field in the dry and
wet regions and the law of motion of the interface.

Problem (1)—(6), (9) differs from the classical
Stefan problem [2—8] in that: a) the boundary condi-
tions are functions of time; b) the temperature at the
interface is not constant but varies with time; c) the
boundary condition at the moving boundary also differs
from the Stefan condition in that it contains time in
explicit form; d) the problem is concerned with the
temperature field in a body of finite dimensions. It is
also different from the Verigin problem [9] and the
Toei-Hayashi problem [6].

Since, with a minor exception, exact analytic solu-
tions of problems with a moving boundary have not yet
been obtained, we use an approximate method that
vields a solution of engineering accuracy. This is Lei~
benzon's method [3] based on replacement of the actual
temperature curves by their approximate analogs.

A mathematical analysis of the experimental data
on the temperature fields in drying cellulose, card-
board, fiberglas, clay, and sand [1, 10] has shownthat
the t3 and t; distributions with respect to the x-coordi-
nate may, with a sufficient degree of accuracy, be
assumed linear.

Then

fa(x, )= (1) + (D %, (10)
1y (x, 1) == c3(7) + ¢a () % (11)

In this case, the differential equations (1) and (2)
are reduced to the form

0%ty
Bae =" (12)
2.
W a2)
ox?



From (12) and (13) and, correspondingly, from (10)
and (11), respectively, we find that

Oy = ¢, (t)and Oty = ¢4 (1).
X ox

Using boundary conditions (4) and (5), we obtain

19 .

Cy (T) = %q('[)r C,;(’IT) = R

We find the constants c4(7) and c3(7), using boundary
condition (6) and expressions (10) and (11):

1 1 —
6@ =10+ qE 6@ =0+ g,
Ag Ay
Substituting c(7) and cy(1) into (10) and c3(r) and c4(7)
into (11), we obtain the final expressions for the

temperature distributions in the dry and wet regions
of the body:

fy (x, T)=twf(r)—%q(r)[X—E], "

1

falt, D=1t f() — —q@)[x—. (15)

A

It follows from (15) that at 7= 0, which corresponds
to £(0) = 0,

1—e

L, O =f(®) =ty ——2q(0)x. .
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Thus, the initial condition must be a linear function
of x, which corresponds to the experimental data.

Finding the expressions dty(£, 1)/0x, Oty(f,7)/0x%,
t3(€,7) and ty(£, 7) from (14) and (15) and substituting
them into Eq. (9), after transformations we obtain

d
sq(r)——erm(r)=twf(r)[c4p4-—cspslT§. (16)

Integration of the latter differential equation gives

_ e£q(t)—erm(r)
; ytwf('f) [Caps—C3.04]

t-+C. (17)

The constant of integration C can be found using the
condition according to which £ = 0 at 7= 0.

Solutions (14), (15), and (17) have been used to cal-
culate the process of conductive drying of cellulose
(specific weight 0.3 kg/m? on a heating surface at a
temperature of 130° C [1, 10].

The function m(7) was determined from the drying
rate {11}:

du —~
m (1) =—g - —= ghuc exp (—k1). (18)

From an analysis of the heat-transfer data, obtained
using the Rebinder number, it was found that

q(v)= qo exp (—vT). (19)

An analysis of the temperature fields obtained by
various authors [10] has shown that the temperature at
the wet-dry interface varies with time according to an
exponential law:

f(r) =exp (—hx). (20)

Substituting (18), (19), and (20) into (17), integrat-
ing, and determining the arbitrary constant, we find
the particular solution of Eq. (17),

I €4y
= ] — — (v — —
: tw [C4p4 — Cp5l { - h{ PL= h) T]]
B
" [1—exp [—(k—h) 71} }, (21)
where
B=c¢rghu,,. (22)

Equation (21) expresses the law of depression of the
evaporation zone during conductive drying and is the
starting equation for determining £.

If we know the experimental dependence of £ on T,
we can use Eq. (21) to calculate the phase-transition
criterion g,

The curve in Fig. 2 represents the depression of
the evaporation zone for the experiment in question
based on Eg. (21).

The calculation data corresponding to this experi-
ment are: ty = 102.5° C; gy = 16 550 W/m? c3p3 = 2.46 -
- 10% 7/m3. deg; cypy = 3.39-10°% J/m?- deg (first part
of the period); cypq = 3.16- 10% 3/m?- deg (second part
of the period); v = 1.695- 10~ 2gec~1; h = 0.575 - 10%sec™1;
k = 3.420- 10 sec~! (first part of the period); k = 4.25+
-10% sec~! (second part of the period); Uery = 0.62kg/
/kg; Uepsy = 0.22 kg /kg; € = 0.08 (first part of the period);
£ = 0.20 (second part of the period).

The experimental points are plotted in the same
figure. Clearly, these points coincide with the analyt-
ical curve, In the second part of the second period, the
analytical curve given by Eq. (21) can be closely
approximated by a linear function.

As for the first part of the second period, the ex-
perimental data are too few (only one point), and it is
necessary to resort to the analytical dependence.

The rate of depression of the wet-dry interface
increases slowly in the first part of the second period
to a maximum that remains almost constant through
the second part of the period.

From (14) and (16), using (18), (19), and (20) we
calculated the temperature curves (Fig. 3) for the
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Fig. 2. Analytical curve showing
the depression of the evaporation
zone (£ in m) with time (7 in sec)
for conductive drying (experimen-
tal points indicated by circles).
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Fig. 3. Analytical curves showing

the variation of temperaturet(°C)

in the layers with time 7 (sec) in

the second period of conductive

drying of cellulose: 1) x = 0;2) 8-

1075 m; 3) 22+ 107%; 4)35-1075;
5) 431075,

same experiment at x = 0; 0.08; 0.22; 0.35 and 0.43
mm, on the assumption that A3 = 0.116 W/m - deg; A4 =
= 0.392 W/m - deg (first part of the period); Ay = 0.290
W/m - deg (second part of the period).

The character of the analytical temperature curves
corresponds to that of the experimental curves [1, 10];
from the start of the second period, the temperature
of all the layers falls simultaneously; then, as drying
proceeds, the temperature begins to rise. This tem-
perature rise starts first in the layers nearest to the
heating surface.

The correspondence of the analytic and experimen-
tal temperature curves proves the validity of our pre-
vious arguments [10] concerning the mechanism of
conductive drying.

The calculated values of the temperatures t; are
close to the experimental values (the maximum devia-
tion is very small—2.5° C). The maximum deviation
of the calculated and experimental values of the tem-
perature ts for the layer x = 0.08 mm is 10° (at the
37-th second); for the other layers, the deviations are
between 0 and 1.5° C.

- For the 0.08-mm layer, the calculated values of t4
are higher than the experimental values in the first
part of the period; for the 0.43-mm layer, on the other
hand, they are lower, while for the 0.22 and 0.35-mm
layers they almost coincide. These regular deviations
are a consequence of the somewhat schematized for-
mulation of the problem, with evaporation assumed to
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take place only at the interface, whereas, in reality,
internal evaporation extends over a certain volume of
the material close to the interface, so that the evapo-
ration at the surface is less intense.

The agreement between the analytical and experi-
mental curves for the depression of the evaporation
zone, and between the calculated and experimental val-
ues of the temperatures in the layers, together with
the fact that the latter vary similarly with time, indi-
cates that the problem has been correctly formulated
and, hence, that the mechanism has been properly
understood.

NOTATION

x is the coordinate, m; 1 is the thickness of the
body, m; 71is the time, sec, t is the temperature of
the body, °C; £ is the moving coordinate of the wet-
dry interface; A is the thermal conductivity, W/m - deg;
a is the thermal diffusivity, mz/sec; £ is the modified
phase-transition criterion; q(7) is the density of the
heat flux from the heating surface to the drying mate-
rial (function of time), W/m?% f(r) is a function of time
determining the law of temperature variation at the
interface; m(7) is the drying rate in the second period
(function of time), kg/mz- sec; Al is the enthalpy change,
J/kg; c is the specific heat, J/kg-deg; p is the density,
kg/m? g is the specific weight, kg/m? k is the drying
coefficient, sec~!; 1 is the integral moisture content,
kg/kg; v and h are parameters, sec™!. Subscripts: w
represents the surface of body with coordinate x = 0;

1 and 2 denote regions of the body in the first drying
period; 3 and 4 represent dry and wet regions, respec-
tively; cr indicates critical; 0 is initial.

REFERENCES

1. A. V. Luikov, Heat and Mass Transfer in Dry-
ing Processes [in Russian], Gosenergoizdat, 1956.

2. A. V. Luikov, Theory of Heat Conduction [in
Russian], Izd. Vysshaya shkola, 1967.

3. L. S. Leibenzon, Collected Works, Vol. IV [in
Russian], Izd. AN SSSR, 1955.

4, G. A. Grinberg, ZhTF, 21, no. 3, 1951.

5. L. I. Rubinshtein, DAN SSSR, 160, no. 5, 1965;
168, no. 4, 1966.
6. Riozo Toei and Shinya Hayashi, Heat and Mass
Transfer, Vol. 5 [in Russian], Izd. Energiya, 1966.
7. B. Ya. Lyubov, DAN SSSR, 57, no. 6, 1947,
8. G. Horvay, IFZh [Journal of Engineering Phys-
ics], 8, no. 6, 1965.
9. N. N. Verigin, Izv. AN SSSR, OTN, no. 5, 1952.
10. V. V. Krasnikov, Contact and Combined Drying
of Thin Capillary-Porous Materials [in Russian], Izd.
MTIPP, 1957.
11. V. V. Krasnikov and V. A. Danilov, IFZh [Jour-
nal of Engineering Physics], 11, no. 4, 1966.
9 January 1968 Technological Institute of
' the Food Industry, Moscow



